

LOGIC IN PHILOSOPHY: THE CASE OF INFORMATION AND COMPUTATION

Johan van Benthem

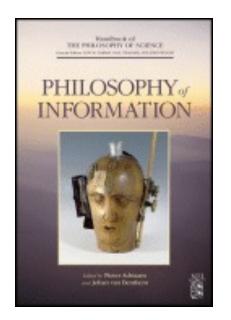
Amsterdam, Stanford & Tsinghua

21 April 2022

Formal Methods and Science in Philosophy IV, Dubrovnik

Introduction

A Priori Views, or More Case Studies?

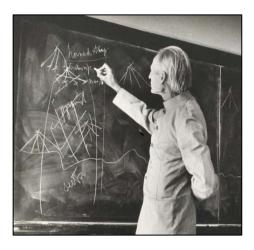

Philosophy and the Sciences

History of contacts is often much richer and more surprising than a priori thoughts

Our thread today: logic, information and computation

Handbook of the Philosophy of Information

Long philosophical history of the notion of information Different legitimate notions of information in the humanities and sciences -- and even in logic


Classical Contacts

Intuitionistic Logic, Mathematics and Philosophy

Analyzing classical contacts. The ideal case study?

Constructive mathematics, **proof** Construction and **computation Knowledge** and information

Proof-theoretic view of meaning (Dummett, Prawitz, Martin-Löf)

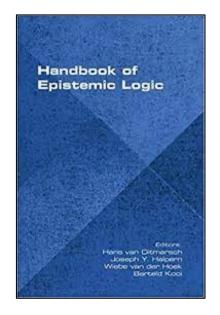
Philosophical and mathematical traditions grown apart? "State of the Union" would be useful -- but not today

Semantic Information

Semantic Information, The Restaurant

order of 3 glasses, new waiter brings them two questions, one inference

information as range of options: 6
update through answers: 6 - 2 - 1
questions and information seeking
final valid inference does not update:
"scandal of deduction"



Epistemic Logic

common sense view of information

and knowledge \mathbf{M} , s |= $\mathbf{K}\boldsymbol{\varphi}$

φ true in all worlds in the range of s

most scenarios multi-agent

knowledge about facts plus: what others know

groups as epistemic entities: common knowledge

mathematical sociology, philosophy, economics, CS

New Lines in Philosophical Epistemology

Knowledge claims only rule out the relevant alternatives

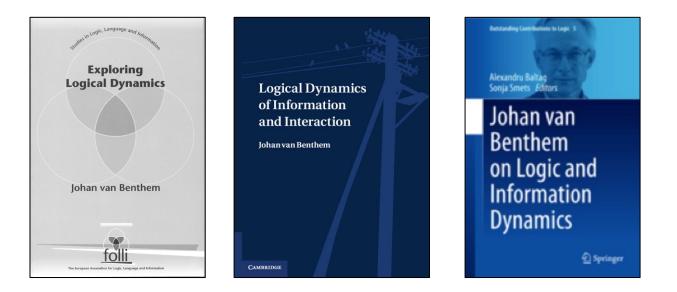
Knowledge as (counterfactually) truth-tracking beliefs

Knowledge as stable belief under new information

All these analyses have an aspect of **dynamic** actions

Competing views or different aspects?

Invariants in Science and Cognition, 19th Century

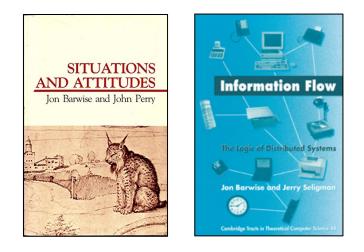

geometrical notions as invariants of motion

mathematical theories: structures and transformations

interplay of dynamics and statics created modern physics

Logical Dynamics

study statics (knowledge, belief) on a par with dynamic informational events and determine the logical laws governing both



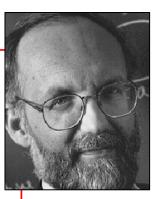
Correlational Information

Correlational Information, Situation Theory

the universe is full of **constraints** between situations

constraints lead to information flow via channels

Mountain Top Seeing smoke from the **foot** of the mountain indicates there is a fire at the **top** (long history...)

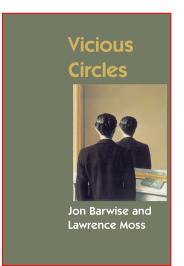

Anti-{Modal, Epistemic}, But Not Really

informational dependencies in the Restaurant:

locations of the glasses constrain each other

logic of information flow across situations/models

THE JOURNAL OF SYMBOLIC LOGIC Volume 64, Number 2. June 1999


INTERPOLATION, PRESERVATION, AND PEBBLE GAMES

JON BARWISE AND JOHAN VAN BENTHEM

Further ST Themes, Circularity

Introduction to Coalgebra

Towards **Mathematics** of States and **Observation**

Bart Jacobs

circularity/non-wellfoundedness among situations

science switch: precursor to modern coalgebra

Correlation Revisited: Dependence Logics

A Simple Logic of Functional Dependence

Alexandru Baltag · Johan van Benthem

Modal Mini Dependence Logic LFD

- **team** set of assignments s: VAR \rightarrow D with possible **gaps**
- functional dependence D_xy local X-values at assignment s fix
 - the value of y : whenever $\mathbf{s} =_{\mathbf{x}} \mathbf{t}$ in our model, then also $\mathbf{s} =_{\mathbf{y}} \mathbf{t}$
 - syntax $\phi ::= \mathbf{Q} \mathbf{x} | \mathbf{D}_{\mathbf{X}} \mathbf{y} | \neg \phi | \phi \land \phi | \mathbf{D}_{\mathbf{X}} \phi$
 - semantics $\mathcal{M}, s \models D_X \phi$ iff for all t with $s \models_X t, \mathcal{M}, t \models \phi$

Thm LFD is axiomatizable and decidable.

but if we also introduce **independence** (as in FOL) **Thm LFD + I** is undecidable

Epistemic Topology

Empirical Inquiry

no sharp values attainable. measurement yields ranges approximation is crucial limit process

crucial in sciences, also in some parts of epistemology

Margin of Error scenarios for knowledge

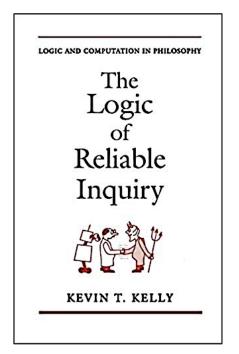
Can Be Modeled in Topology

open sets

outcomes of possible observations approximation of values now essential many versions of this idea: Vickers, Parikh & Moss also Intuitionistic Logic!

Topology of information states, or: stages in temporal history of inquiry

Felix Hausdorff



Marshall Stone

Aside: Learning Infinite Objects

limit processes also in Formal Learning Theory

Continuity and Learnability

useful approximation: continuous dependence

knowing that measurement approaches the truth

knowing how to approximate: uniform continuity

independence: unlearnable parts of the universe?

"Wir müssen (nicht) wissen,

wir werden (nicht) wissen"

David Hilbert

LCD Logic Extends LFD

The Logic of Continuous Dependence

Alexandru Baltag & Johan van Benthem

Knowability as Continuous Dependence

Alexandru Baltag, ILLC, Amsterdam

Based on joint work with Johan van Benthem.

richer modal base logics for continuous, uniformly continuous knowledge

one more strand in growing modern interface area:

Epistemic Topology, Interface Field

two faces

conceptual + mathematical analysis of epistemic notions

philosophy and science can work together

possible influences both ways

VI

Computation

Information as code

Concrete computation works on code

and so does concrete deduction

Many of the above themes need to be rethought in this setting Turing machines, Proof theory, Kolmogorov complexity

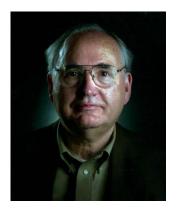
Just One Issue: Which Information?

"Scandal of Deduction" revisited:

What information is provided by computation and deduction?

Improved access to semantic information? Dynamics of **awareness** and **attention**?

Very live topic today


Nothing like the earlier rich semantic theory exists

Digression: Semantic Level Still Make Sense

Computability in **Domain Theory** complete lattices of 'information pieces' **Scott topology** base of finite information pieces (not upset topology for inclusion) Scott continuity ~ abstract **computability**

LFD/DCD dependence logic analysis still work here

The Information Landscape

from **syntax** (most fine grained) to **sets** (least fine-grained)

Many intermediate levels: plausibility models, probability, algebra

Both directions yield insight: going finer, and: coarser

Unity of logic: interlevel connections, translations

Another Deep Computational Theme: Coalgebra

Inversion of perspective: not construct objects **bottom-up**, but **observe/analyze** outside-in

philosophical repercussions have hardly begun e.g., for established views of meaning

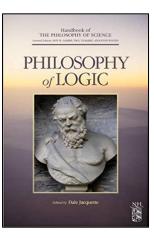
Compositionality in Context

Alexandru Baltag, Johan van Benthem, and Dag Westerståhl

VII

Conclusion

History of Ideas


encounters of philosophy and the sciences are ubiquitous and often not well-known

we followed just one strand:

logic, information, knowledge, computation

many more stories

need to be, and can be, told

Coda: Philosophy and Science, Attitudes

not "fight", but "fit"

References

write to johan@stanford.edu