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Introduction

He obtained his M.Sc. degree in geophysical engineering in 1999 from
Faculty of Mining Engineering, University of Miskolc. He has been
continuously working from graduating at the University of Miskolc. He
obtained his Ph.D. in 2005. Since 2019, he has been a full professor at the
Department of Geophysics. He is currently the head of Geophysical
Department and vice-dean for scientific affairs at the Faculty of Earth
Science and Engineering. In addition, he is senior research fellow at the
MTA-ME Geoengineering Research Group. In 2020, he defended his D.Sc.
dissertation at the Hungarian Academy of Sciences.

He conduct researches on geophysical inversion and exploratory
(multivariate) statistical methods and their applications in earth sciences
(mainly water and hydrocarbon prospecting). He delivers lectures on well
logging, gravitational and magnetic exploration methods, engineering and
environmental geophysics and geostatistics in the framework of BSc, MSc
and PhD training programs.
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Course Description

Introduction to basic univariate and multivariate statistical methods. The
advantage of using robust statistical methods

The Most Frequent Value (MFV) method as robust statistical estimatior
Exploratory factor analysis of geospatial variables

Evolutionary computation-based factor analysis and its applications for
improved lithological analysis and quantitative estimation of petrophysical
properties

Cluster analysis of multidimensional data objects and its applications for
improved lithological analysis and quantitative estimation of petrophysical
properties

Machine learning tools as an aid for a more relaible interpretation of
geophysical data. Well logging applications and examples
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Why Geostatistics?

How often does a specific value of data
occur in the data set?

How many data occur below a specific
value?
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How can data frequency modelled

mathematically? o
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How to handle incorrect data? A S @
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Multivariate Statistics

What is the probability of joint
occurrence of data?

Is there a relation between data sets
or are they independent?

How strong is the relation between
data sets, positive or negative?

How do we describe this function
relation mathematically and use it to
interpolate the result to unmeasured
locations?

How do we estimate the model
parameters from the data?

What is the error of estimation?

How do we sort data in case of a big
dataset?
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Frequency of Data

81 77 103 112 123 19 40 111 114 120 Class Number Percentage
+ + + -+ + + - + + + 0 s V <10 l 1
a+2 i‘ |l° 131 |l' 7..7 ? |1| 117 134 10 S V <20 l 1
82 74 97 105 112 9' 73 115 118 129 S 20 < V. <30 0 0
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g 10" function (histogram)
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— e | : (Isaaks and Srivastava, 1989)
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Frequency of Data

Class Number Percentage

81 77 103 112 123 18 40 111 114 120
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Gaussian Distributed Data

f(x) I General formula of p.d.f.
(x-T)°
small S 1 T

high uncertainty

ﬂ fG(X):S.me

high accuracy " Standardized form of p.d.f.
ﬁ (T=0, S=1)
high S 1 _%
fG (X) =—=—¢
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Characteristic Values of Sample

.ﬂl 2@21

*l Arithmetic mean of sample [%Fm L?]
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Robust Estimation

Balance example: consider the e
following data set including six data @lr T

and one of them is an outlier. The
source of outliers can be a defective
instrument, wrong measurement,
data transfer or recording etc. 0 5 W 15w % ® % W

It can be seen that the sample mean
is very sensitive to the presence of the

outlier, the median and the most >y 7
frequent value given more realistic [ Z‘y(m) ”
estimations o

Resistance: the estimator is almost o1 L, =_Z‘y(m) )(
entirely insensitive to the presence of o

outliers 18 o
Robustness: this kind of estimation p=a: Lz:\/ﬁg(' ~f0)]
procedure gives reliable results for a o

wide variety of data distributions X ¥ L L L p=c: L, _max‘y )
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Most Frequent Value

4%
“n \Weighted average - data far from the 1o/
most of the data get small weights,

data at near the MFV get higher

weights 80
- |
in(oi 2 60-
M:—i:]' qp = &
n ! I 2 2
e +(X;—M ]
Z(pl (I )
i= 40
* Automated iterative process - in |
general the values of M and ¢ are 20-
calculated simultaneously by a |
recursion formula. Optimal weights Tl 5 1
are automatically estimated to the Y 3 T
given dataset _— 2 =.
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Most Frequent Value

i M is the most frequent value - location parameter
I ¢ is dihesion - scale parameter

Large dihesion =
Big weights go to each data

Small dihesion =
Small or zero weights to
outlying data
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x=[-12.5 -6.7 -2 -1.5 0.1 2.4 6.8 9.8 15 23.5 30 1

15
Iteration step

15
Iteration step
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Well Logging Example

DEPTH GR ‘ RCPT Ps R Fitea Sw.rea Sw.mFv.rFA m Vs
- e—— . * - ]
m 1500 cpm 3500 0.2 MPa 200 |16 glcm® 24 0 ohm-m 140 -3 603 VIV 1,03 VIV 1.0 VIV
N FZ,TFA sw,in\raraicm Sw,inversion
055 VNV 0.05 -20 5/03 VIV 103 VIV 1
AIR EFFECT Fy. mFvarFa
' -3 6
FZ,MFV-IRFA
-20 5

= —

5.0

10.0

15.0

20.0
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Model of Factor Analysis

« Standardized well-logging data are stored in N-by-K matrix

GR, SP, RD, RS, DEN, PHIN, AT, CAL, TE

GR, SP, RD, RS, DEN, PHIN, AT, CAL, TE,

1 1

GR, SP, RD, RS, DEN, PHIN, AT, CAL, TE,

GR, SP, RD, RS, DEN, PHIN, AT, CAL, TE

N N N N N N

GR, DEN, NPHI, RES\ (F® F®
« Decomposition of data matrix GR, DEN, NPHI, RES,| |F® F®
GR, DEN, NPHI, RES,| |F® F®
D=FL +E GR, DEN, NPHI, RES,| |F® E®

GR, DEN, NPHI, RES,| |F® F®|L, L, L, L,

. GR, DEN, NPHI, RES,| |F® F?|L, L, L, L,
F: N-by-a matrix of factor scores GR, DEN, NPHI, RES,| |F® F®
L: K-by-a matrix of factor loadings GR, DEN, NPHI, RES,| |F® F@
i i OR=E)
E: N-by-K matrix of residuals GR, DEN, NPHI, RES,| |F® F
supported by GR,, DEN,, NPHI, RES,) |(F® F2

M: number of factqrs
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Quick (Non-Iterative) Solution

« Factors are linearly independent, matrices FL' and E are uncorrelated,
correlation matrix of observed data (W is maftrix of specific variances)

R=N'DD=N*FL) (FL')+N'ETE=LL" +W¥
« Joreskog's non-iterative approximate algorithm

S: sample covariance matrix
_ \1/2 " Q: matrix of eigenvectors
L = (dlagS 1) Q(r-61)*u I': matrix of eigenvalues
U: arbitrary orthogonal maitrix,
0. constant for specifying factors

« Bartlett's hypothesis of linearity leads to an unbiased solution

P——(D-FLU' ) ¥*(D-FL)=max — F=("¥'L)'L"¥'D
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Exploratory Factor Analysis of Well

Well log Well log
(1) (2)

Well log

(K)

4 4

4

Robust Factor Analysis

4 4

4

Logging Datasets

A priori
information

Factor log Factor log

(1) (2)

Factor log
(a<K)

4 4

4

Regression Analysis

) e

i}

Regression
relationships,

study of correlation

1) (2)

Petrophysical | | Petrophysical R Petrophysical
parameter parameter parameter

(M)

N

Quantitative analysis
of well logs with less
number of unknowns

A
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Learning) Assisted Factor Analysis

Fithess function is related to the data
deviation vector

~ 112
F = —Hd - LfH2 = max

XYW 2@21

Probability of selecting the i-th factor score
vector by geometric ranking selection

P(F0)=—1 _(1-q)"*

1-(1-q)°
Heuristic crossover gives an extrapolation of « The v-th factor score is randomly
two individuals changed by uniform mutation
(new,1) _ g(old,1) (old 1) (old,2) I —
o) _ O | (o _ o) f<new>:{77’ T v=h
(old) -
flnew2) _gloldy f,”"’, otherwise
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Learning) Assisted Factor Analysis

a) T-th population

/ ’ﬁw ‘ fo | £ | |f,$3,| \

| fl(z;| f2(2;| f3<1)| ‘ f,ﬁi}‘

’f]m | e | f1(3>| |f,f,i}|

|fl(4) | o | f3(4)| Ifn(fu)l

K | £ | 9 | fsm‘ | f"(’f’)y

b)

IREEENE

flu) f2(4) fj(zt}‘ ‘ I\(f:d')|
p=2
c)
|f1m ‘ 1o ‘ f]ml e

(T+1)-th population

- 2

|f;<2) ‘ o ‘ ﬂ(2)| |f{,fj|

EEEEE

(4)
NM

f(“)
1

f@ | Iz ‘
5

BRI

- |f1m ‘ 1o -

ey,

| o | o] g 7@

| o | o ‘ f}(:»)‘ | f,&i}|
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Factor loadings,
optimal number
of factors

&

Bartlett's method

Y

Factor scores,
initialization of
FGA procedure

&

Prior information,

mathematical
considerations

Predicted
well logs

Is fit
satisfactory?

Resultant
factor logs

Reproduction,
updating
factor scores

Selection,
Crossover,
mutation

Regression Shale volume,
analysis ‘::>

permeability logs
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Genetic
Algorithm
(Machine
Learning)

Assisted Factor
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Shale volume
from Larionov method (v/v)
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Quantitative Estimation of &=
Petrophysical Properties

2D factor analysis

Well-2
USA, Wyoming
Pennsylvanian age

0.8r

0.6}

0.4

0.2t

Decimal logarithm of permeability (mD)

-2 1 1 1 L
0 0.1 . . 0.4 0.5 0.6

First statistical factor First scaled factor
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Shale Volume Estimation

Depth L SP Ll Rs F1,IRFA Vsh,IRFA Mvma
(M) 100 cpm 500 50 mV 108 kepm 14 0 ohmm 60 -3 30 w10 w1
CAL NN Vsh,CORE
250 inch 550 4  kepm 8 o v 1
Vsh,LAR

viv
=2
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Multidimensional Factor Analysis

Horizontal distance (m)

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

Well-2 Well-3 Wells-4-5 First factor

I 0.9

£ 0.8
=
3 0.7
o
0.6
Horizontal distance (m) 0.5
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 Second factor
Well-1 Well-2 Well-3 Wells-4-5
2
= 1
£ 100
£ 0
& 200 ’
A 5
300 -2
-3
. . Logarithm of
Horizontal distance (m) permeability (mD)
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
Well-1 Well-2  Well-3 Wells-4-5 I 2.5
oA Ao A A A 15
L
S 200 ! s ] 05
(] — _
300 e H 15
Hydrocarbon reservoir Impermeable formations 2D factor analysis I 2.5
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Measure of Similarity

Contour plot of the Euclidian distance to the origin

Let the vectors x() and xY) denote two multivariate
observations from a population with p random variables X, ...
X,. In a more detailed form, the i-th and j-th observations are

x® = {x?), ...,xg)}T and xU) = {x&j), ...,xg)}T, which

represent two so-called objects in the data space, respectively.
In order to group the objects (or more objects) into clusters a
measure for the similarity of elements needs to be defined. To
determine the similarity between two objects, distance
measures can be used. The TCA uses the Euclidean distance:

By weighting it with the covariance matrix, we get the
Mahalanobis distance:

D(x®, x0) = J{(x(ﬂ) — xD)Ts(x ) — 200},

where § = CTC/(n — 1) is the covariance matrix derived
from the standardized data matrix C.
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K-Means Clustering

K n;
SSE = E : z : d2 (Ci ’ Xj) K is predefined number of clusters

i=1 j=1

10

S5E

i 1 1 |
0 5 10 15 20 25 30 i the
Mumber of Clusters ion
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Hydrogeophysical

a) b)
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300 e 50 20\)\
350 40
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Legend

o Aquitard (Cluster 1)
e Agquifer with low conductivity (Cluster 2)
Aquifer with medium conductivity (Cluster 3)
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Logging

Thermal neutron intensity (kcpm)
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Hyd hysical L '
Depth GR S RES VCL from RES K from RES CLUSTER NO.
[
(m) 100 cpm 700 1000 m2/m3 10,000 | 1 ohmm 100 |0 % 60 | 1x10® m/s 0.001 | 1 2 3
VCL?PORE K | CORE
0 % 60 | 1x108 mls 0.001
150.0 o
4 =)
.
200.0 o *
®
L) { ]
[ ]
° ) *
P [ )
250.0 ¢ i
[ ] * L ]
.. ® [ ]
(]
300.0 . ¥ .
]
[ ] o @
P
350.0 > b
- S
. S
° J b 5
400.0 . ...
>3-
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g .—\:T
Jf' N b




Supported by

' ; Co-funded by the .
eit ) RawMaterials - : ), [
C ACADEMY European Union

ESEE

Petrophysical Example

q>(Sw,mov+sw,irr+sg,mov+ Sg,irr +so,mov+so,irr)

Depth GR Scaled F1 PERM INV-I Sw POR VSH VSD Cluster No.
— --- - ST | R
(m) 30 APl 130 |0 1/0.002 mD 2000 0 viv 1.0 viv 101 2 3
PERM_FA SX0
0.002 mD 2000 0 viv 1
Vt=1 ~ PERM-INV-L Brine Hl Shale
—— | I
0.002 mD 2000
Movable HC Sand
.|
Shaly
Irreducible HC L sand
- I
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X y X y X y | f
: N = = — Rep acemento
1 5 1 5 1 5 9.83
2 2 7 2 2 7 2 2 7
3 3 3 3 3 3 ° °
e e T e B e R Missing Data
5 5 5
6 3 6 6 3 6 6 3 6
7 9 7 9 7 9
a) b)
1 ! T T T ‘1 !
- i
|
Load data 50§ 50 -
— I
- _ = I i
v 100 - == D 100 E
- —_— [1h] —
3 _ e — 3 =
= ' K
Remove unnecessary columns 5 150 E & 150
o E g
5 F e ——— I -y
O - ° [
A 4 G 200 . G 200 |
Estimate the missing data E = 2 E
£ £ I
2 250 - = 250 -
c — = = — —
! : £ N - : E
c - —_— c = —_—
S - = 2 = =
Reduce dimension by PCA o 300 - = | o 300 E‘ == _;
s —.— = =
l 350 - ) - 350 | = 1
N B | 1
Clusterization by K-Means 3 - - =
400 |8 = ] 400 i E
; 1 _=_ — Il 1 1 = =

20 30 40 50 1 10 20 30 40 50

-
-
o

Ordinal number of observed parameter Ordinal number of observed parameter
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Core Carbonate volume | Porosity (horiz.) | Porosity (dyn.) |Permeability (vert.)|Water permeability| 1-SHg (0.1 bar) Water sat. (0.17 bar) Cluster No.
Number ¢ viv 1.0 viv_ 0150 viv_ 030 mD 700 mD 250 viv._ 100 0.1 viv 101 2 3 4 5
Porosity (vert.) Permeability (horiz.) Oil permeability 1-SHg (0.75 bar) Water sat. (0.7 bar)
0 viv_ 015 0 mD 7/0 mD 25|0 viv 100 0.1 viv

1-SHg (2 bar) 'Water sat (1 7 bar)'

0 viv 1 0.1
1-SHg (7.5 har) Water sat. (2.7 bar)

0 viv 1 0.1 viv 1
1-SHg (30 bar)  Water sat. (4.2 bar)

0 viv 1.01 viv 1
1-SHg (200 bar)  Water sat. (6 bar)

0 viv 1

50

100

150

200

250

300

350

400
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Thank you for your attention.

Prof. Dr. Norbert Péter Szabo
Institute of Geophysics and Geoinformation Science,

University of Miskolc

"l info@dim-esee.eu
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