

Innovative solutions for and challenges in underwater spaces: sensor development, robotization

Richárd Z. Papp DIM EESE 2: IMPLEMENTING INNOVATIONS Dubrovnik, Croatia, 20.10.2021

Supported by

Topics

- Underwater environments
- Robotics
- · ROV/AUV
- Market solutions
- UNEXMIN/UNEXUP
- Underwater navigation
- Underwater sensor technology

iupported by

- Deep sea mining
- Flooded open-pit mines
- Shallow sea
- Flooded underground mines

Supported by

Deep sea mining

- Where?
 - 200m below the ocean
 - 65% of the Earth surface
- What technology?
- What is the issue?
 - Disturbance of the seafloor
 - Sediment plumes
 - Pollution

Flooded open-pit mines

Konstantinovsky open-pit coal mine, Russia

Rudabánya, Hungary

Shallow sea

- Up to 200m water depth
- Tara mine Navan, Ireland (SEDEX Pb-Zn)

Tara mine – Navan, Ireland Source: timdurham.ie

Tara mine – Navan, Ireland Source: mining-technology.com

Tara mine – Navan, Ireland Source: boliden.com

Shallow sea

- Diamond, Zircon, Ilmenite, Gold, Amber
- Dredgrer boats
- Dredgring the seafloor sediment up to 2-3m thickness
- South Afrika De Beers Inc.

Van Oord Enacts Hopper Dredger Option Source: www.maritimeprofessional.com

De Beers dredgrer Source: www.debeersgroup.com

Gold-dredging boat in Nome, Alaska Source: www.rcinet.ca

Flooded underground mines

Flooded underground mines

Flooded underground mines

- Robotics is an interdisciplinary field that integrates computer science and engineering.
- Robotics involves design, construction, operation, and use of robots.
- The goal of robotics is to design machines that can help and assist humans.
- Robotics develops machines that can substitute for humans and replicate human actions.

awMaterials ACADEMY

Robotics is an interdisciplinary field that integrates computer science and engineering. Robotics

- Robotics involves design, construction, operation, and use of robots.
- The goal of robotics is to design machines that can help and assist humans.
- Robotics develops machines that can substitute for humans and replicate human actions.

- Robotics is an interdisciplinary field that integrates computer science and engineering.
- Robotics involves design, construction, operation, and use of robots.
- The goal of robotics is to design machines that can help and assist humans.
- Robotics develops machines that can substitute for humans and replicate human actions.

Laws of Robotics

- 1. A robot may not injure a human being or, through inaction, allow a human being to come to harm.
- 2. A robot must obey the orders given it by human beings except where such orders would conflict with the First Law.
- **3**. A robot must protect its own existence as long as such protection does not conflict with the First or Second Laws.

Supported by

awMater Acad

Co-fu Europ

Robotics

Robotics is an interdisciplinary field that integrates computer science and engineering. Robotics

- Robotics involves design, construction, operation, and use of robots.
- The goal of robotics is to design machines that can help and assist humans.
- Robotics develops machines that can substitute for humans and replicate human actions.

DÎ

ROV/AUV Remotely operated underwater vehicle (ROUV/ROV)

- Tethered underwater mobile device •
- Unoccupied, usually highly maneuverable
- Operated by a crew
- **Open or Box Frame ROVs**
- Torpedo Shaped ROVs
- Mostly external power supply

Source: https://www.subsea-tech.com/

Autonomous underwater vehicle (AUV)

- Travels underwater without requiring input from an operator
- Mostly torpedo shape
- Internal power supply (battery)
- Usually used for mapping
- Simultaneous Localization and Mapping
- Artificial Intelligence

Source: https://www.usgs.gov/

- BlueRobotics
- Deeptrekker
- SUNFISH
- SUBSEA TECH
- fugro
- KONGSBERG
- gysea
- SOFAR
- NAVATICs

Market solutions

General details

- Personnel ROVs
 - <30 cm
 - 3-5kg
 - Price from 1000 EUR
 - Only visual inspections with RGB cameras
 - Internal power supply
 - 30-40 min battery time
- Industrial ROVs/AUVs
 - >50 cm, >30kg
 - Price from 10000 EUR
 - Usual dive depth 200-1000m
 - 3D mapping with sonar (multi-beam)
 - Internal or external power supply
 - 2-100 h battery time (with internal power supply)

Field of application

- Bridge piers
- Ship hulls, shipwrechs
- Floodes mines, submerged
 caves
- Archeological sites
- High-resolution high-speed seabed mapping and imaging
- Pipeline and subsea structure inspection
- Geophysical site inspection
- Environmental habitat mapping

- Underwater filming
- Oceanic exploration
- Recreational
 - Aquaculture, fish farms
- Underwater operations
- Public safety & Law Enforcements
- Offshore energy sites
- Port and harbor structures
- Environmental monitoring
- Marine geological survey
- Search operations
- Pipeline and cable route analysis and selection

Market solutions

Available sensors /add-ons

- Only for industrial ROVs/AUVs
- Multi-beam sonar
- High Resolution Iterferometric Synthetic Aperture Sonar
- Scanning sonar
- Pressure and temperature sensor
- Dissolved oxygen sensor
- Multipatameter water chemistry sensor (pH, temp, O2, EC, depth, density, pressure,
- DVL (Doppler Velocity Log)
- CP probe (Assess and monitor corrosion inhibiting systems

- Leak sensor
- RGB cameras and light sources
- Underwater GPS
- Sub-bottom profiler
- Turbidity sensor
- Sidescan sonar
- Methane sensor
- Thickness gauge
- IMU
- Water sampler
- Sediment sampler

d by

UNEXMIN/UNEXUP Projects

DIEXTIN -> LINEXLP

2016-2019

Development and testing of a multi-robotic platform for spatial and geoscientific survey of underwater environments

2020-2022

Commercialization of the robotic technology, while further improving its software, hardware and capabilities

Supported by

UNEXMIN/UNEXUP Projects

UNEXMIN UX-1	UNEXUP UX-1Neo
Monolithic	Modular
112 Kg	<90 Kg
Limited lateral motion, no pitch stabilization	Pitch stabilization with lateral motion
5DOF (2 with limitations: pitch and lateral)	6DOF
One scanning sonar	Two scanning sonar (additional vertical scanning sonar)
Limited connection	10 Gb fiber-optical umbilical connection
5 Cameras	6 Cameras
4 SLS	6 SLS
SLS Short baseline limits the sensor range	Increased SLS baselines
Internal batteries - charged inside of the robot	Swappable batteries
500 m rated	1000 m (except M3 500m, scanning sonar 750m)
battery capacity: 1450 Wh	battery capacity: 2600 Wh
5h operation	>8h operation

Supported by

SLS - Structured Light Sensor

- 3D morphological information of the scanned environment and imaging.
- Laser/light projector unit and dedicated camera.
- Embedded processor laser line detection and triangulation

DVL - Doppler Velocity Log

- Acoustic sensor that estimates velocity relative to the bottom
- Accurate position and depth measurements

Co-funded by the European Union

		3	E
IN	FY		

Kongsberg M3 Sonar	
Vertical FOV	3°
Horizontal FOV	120°
Range	0.2 to 120 m
Update Rate	up to 24 Hz
Material	Aluminum
Depth	500 m

Nortek 1000 DVL

Max. Operation Depth	4000 m
Long Term Accuracy	+- 0.2% +- 1mm/s
Maximum Altitude	0.3 to 50 m
Velocity Resolution	0.01mm/s
Pressure Sensor Accuracy	0.1 %
Update Rate	8 Hz

Sonar - Kongsberg M3 sonar is the mid/long-range sonar for large

mine cavities explorations and mapping.

Tritech Micron sonar is a helpful tool for close to mid-range obstacles detection and avoidance.

Impact subsea sonar has the same objective as the previous sonar, but it is placed in another strategic point for better coverage of the obstacles.

Tritech Micron Sonar	
Vertical FOV	35°
Horizontal FOV	3°
Range	0.3 to 75 m
Update Rate	24 Hz

Imaging Sonar	
Vertical FOV	23°
Horizontal FOV	2.2°
Range	0.15 to 90 m
Update Rate	Up to 24 Hz

IMU – KVH IMU sensor is a high-resolution navigational sensor that is used for the position and orientation calculations of the robotic system.

Gyroscopes	
Bias Instability	<0.1, 1 omega (max)
Bias Offset	<0.1, 1 Ω(max)
Random Walk	<0.012° \sqrt{hr}
Accelerometers	
Bias Instability	<0.05 mg, 1 Ω
Bias Offset	0.5 mg
Random Walk	0.12 mg \sqrt{hr}

KVH 1775 FOG IMU

T200 Thruster

Operating Voltage	7-20 V
Full Throttle	6.7 / 5.05 kg f
Minimum Thrust	0.02 kg f
Full Throttle Power	645 W

Photo: Rocky Shore Pictures

Underwater navigation

Photo: Rocky Shore Pictures

Supported by

Supported by

Photo: Rocky Shore Pictures

Photo: Rocky Shore Pictures

- ¡VAMOS! Project
- Underwater beeper
- 4 corner of the platform
- Triangulation
- ,Underwater GPS'

Virtual reality scene of the ¡VAMOS! underwater mining system with the created terrain surface model of the Bejanca mine. Source: www.semanticscholar.org

Underwater navigation

Conceptual desing of the platform Source: www.damen.com

The ¡VAMOS! mining machine Source: www.semanticscholar.org

Supported

- Multi/hyperspectral imaging
- Sub-bottom sonar
- Water parameter measurements
- Water sampling
- Underwater rock sampling
- Gamma measurements
- Flux-gate magnetometer

orted by

<image>

Underwater sensor technology Multi/hyperspectral imaging

upported by

Air 20

Underwater sensor technology Multi/hyperspectral imaging

Multi/hyperspectral imaging

Underwater sensor technology Multi/hyperspectral imaging 1.2 0.8 albite 0.6- anglezite barite calcite cerussite dolomite 0.8 gypsum 1.2 0.8 0.6 Reflectance 0.6 1.2 0.8 0.6 1.2-0.8 0.6 1.2 0.8 1000 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 720 740 760 780 800 820 900 920 940 960 980 8/I M 880 Wavelength [nm]

ACADEMY

Supported by

Underwater sensor technology Sub-bottom sonar

- Sediment thickness profiling
- Rock fracturing test

F

G

Underwater sensor technology Gamma-ray detector

Underwater sensor technology Water sampler unit

- Energy consumption: ~ 4 A peak, 2 A constant @ 12 VDC
- Sampling time: ~ 4-5 s
- Dry mass: ~ 250-300 g
- Dimensions: 410x70 mm (length x diameter)
- Interface: RS-485
- Planned max. operational depth: 1500 m

Underwater sensor technology Water parameter unit

- Energy consumption: 500 mA constant
- Dry mass: ~1.4 kg
- Dimensions: 180x80 mm (length x diameter)
- Interface: RS-485
- Max. operational depth: 1000-2000 m

Underwater sensor technology Water parameter unit

Underwater sensor technology Water parameter unit

lake 8

Profiling measurement
EC - salinity
Pressure - depth
O2 - anoxic environment
pH
Temperature

Water parameter unit

pH

Profiling measurement
EC - salinity
Pressure - depth
O2 - anoxic environment
pH
Temperature

depth [m]

10.5

Rock sampling unit

- Pump: ~ 4 A peak, 2 A constant @ 12 VDC
- Dry mass: ~ 300 g
- Interface: RS-485
- Max. operational depth: 1500 m
- Water pump (fully immersed)
- Filter on inlet side
- 3D printed + acryl parts

upported by

- Fluxgate compasses and gradiometers measure the direction and magnitude of magnetic fields
- The device that serves for the vectorial measurement of low intensity magnetic fields.
- It is relatively simple but allows to reach resolutions of the order of the nanotesla.

Underwater sensor technology Fluxgate magnetometer

Supported by

Summary

- Underwater environments
- Robotics
- · ROV/AUV
- Market solutions
- UNEXMIN/UNEXUP
- Underwater navigation
- Underwater sensor technology

iupported by

Thank you!

www.unexmin-georobotics.com

info@unexmin-georobotics.com ricsi@unexmin-georobotics.com

