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Why we need solutions for underwater exploration and
mining in responsible raw material supply in the future?




Where are the things come from?

Periodic Table of the Elements
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How many elements the humankind used in history (for energy)?

Figure 2: Materials widely used in energy technologies (1700-2000)*
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Global raw material extraction

Figure 3: Global material extraction by resource type and GDP (1900-2009)*
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Figure 1. Combined critical raw materials use in different technologies in the

Additional material consumption batteries, fuel cells, wind turbines and photovoltaics in

renewables and e-mobility only
in 2030/2050 compared to current EU consumption® of the matenal in all applications

E-mobility raw materials
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* See the methodologecal notes in Annex 1 and all data in
O 4 Annex 2
** of refined supply (Stage 1) instead of ore supply (Stage 1)
*** increase in demand of all graphite in relation to natural

2010 2020 2030 2040 2050 g 3 s

p. Aluminium, borates, cadmiim, chromeum, copper, gallium,
- germanium, ndium, manganese, molybdenum, platinum,
selenium, silicon metal terbium, tellurum, silver, steel and
zinc have a negligble addtional dernand (< 10%)
- compared to the current EU share of global supply




E-mobility raw materials predictions 2030/2050

Figure 8. Li-ion batteries: an overview of supply risks, bottlenecks and key players along the supply chain. (See the Glos-
sary for the acronyms used)
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F (fluorspar), Sn natural & artificial
graphite)
Critical Raw Material
EU27 | 1% 8% B %
Rest of Europe 3%
China 32% 52% I 52% 66%
Japan | 1% 31% I 1%
Russia 3%
USA | 1% Il 13%
Africa 21%
Rest of Asia Il 11% 1% | 1% 13%
Latin America 21%
Others 1% 8% m 7% 8%




Raw material need of wind turbines

Figure 18. Raw materials used in wind turbines

Iron: as cast iron or in steel
composition for tower, nacelle
rotor and foundation; in NdFeB
permanent magnets

Chromium: essential for stainless
steel and other alloys in rotor and
blades

Manganese: essential for steel
production used for many parts of
a turbine

Molybdenum: in stainless steel
composition for many components
of the turbine

Nickel: in dHl)V:dH(‘] tainless steel
for different components of the
turbine

Niobium: a microalloying element @
in high strength structural steel for

towers of a turbine

Boron: in composition of
neodymium-iron-boron (NdFeB)

magnets or as lubricant

@ Dysprosium: important additive of
neodymium-iron- boron (NdFeB)

permanent magnets

i @ Neodymium: in NdFeB permanent
magnets for electricity generation

== Praseodymium: together with
Aluminium: as lightweight neodymium in permanent magnets
material in nacelle equipment

blades, etc

Copper: widely used in generator

windings, cables, inverters, control
systems

Lead: for soldering or cable
sheathing in electricity transmission
offshore) @ Critical Raw Material




Raw material need of defence industry

Figure 57. Relevant raw materials used in defence applications.
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Where the humankind mined in history

Figure 9: Share of world metals mining by world region (1850-2009)*®
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Raw materials supply risks / problems
96% of the raw materials are imported to EU

If (the majority of) the international trade of a raw material is controlled by
one or few maybe even unreliable countries... REE embargo of China!!

Conflict minerals COVID19 situations....

ColTan, Congo i ) :
Diamond Sifrra Leone Not help consolidated international

raw material supply

Isotope measurements, etc...

. e e . Criticality assessment of ra
EU Raw Material Initiative (2008) - ma't'eria'|sysupp|y regularly "




Economic importance and supply risk results of 2020 criticality assessment

Figure 2. Semi-quantitative representation of flows of raw materials and their current supply risks to the nine selected
technologies and three sectors (based on 25 selected raw materials, see Annex 1 — Methodological notes) Figure 12: Import dependence for selected raw materials®
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Economic importance and supply risk Introduced list of 14 Critical

results of 2020 criticality assessment Raw Materials (CRM) in 2010
T et ; updated 20 CRMs in 2014

g o updated 27 CRMs in 2017

Updated 30 CRMs in 2020

2020 CRM list:
. . Antimony, Baryte, Bauxite, Beryllium,
:_é o @ proshons e Bismuth, Borates, Cobalt, Coking coal,
3 oo Fluorspar, Gallium Germanium,
: J— Hafnuim, HREEs Indium, Lithium,
: LREEs, Magnesium, Natural graphite,
Natural rubber, Niobium, PGMs
o e SRS Phosphate rock, Phosphorus,
I e S et Scandium, Silicon metal,

Rhenium® P:”%E:aolinala:v. SICASNG yyirogly ® @ Cacmium Se\senium .cz;?cer . . .
LTV SO M > Strontium,Tantalum, Titanium,

0.0 0.5 1.0 15 2.0 25 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0

Economic Importance Tu ngste n’ Vanadium




Economic importance and supply risk results of criticality assessment

Growing demand on raw materials
Size of humankind + growing economy
Best resources are exploited

Possibilities: Primary production, recycling, substitution

Recycling: Pt vs. In, Sb... and how many times?

Primary production will be needed even in long term




How the robotic projects fit to the raw materials strategy of the EU

» Raw Materials Initiative (RMI) 2008 = Raw materials strategy of the EU - Based on 3 pillars

Fair and sustainable raw material import from the global market

e Sustainable raw material supply from inside EU

Effective resource management and use of secondary raw materials with recycling

* Second Pillar

* Improve of legal framework of exploration and exploitation of raw materials

* Improve the knowledge of raw materials inside of EU with the development of innovative exploration and exploitation methods

-> which ,the biggest economic profit and environmental advantage can be achieved with”

« - Action plan: Strategic Implementation Plan (SIP) for the European Innovation Partnership on Raw Materials (2013)

* 1.2 and I.3: development of exploration and extraction methods of raw materials
* New exploration technologies
Automated mining technologies

Utilization of small deposits with economic and environmentally sound technologies

* -> Horizon 2020 programmes: UNEXMIN (2016-2019), VAMOS (2015-2018), ROBOMINERS (2019-2022), CHPM2030 (2016-2019)

* FP9 is called Horizon Europe (2021-2027)
« = EIT Raw Materials (foundation 2015): the biggest association in the raw materials sector: UNEXUP (2020-2022)




Environmentally sound exploration and exploitation technologies

* New exploration, new methods technologies (for new targets)
* Low concentration (till now uneconomic) but large deposits
» Ultra deep seated deposits (land and sea)
e Small but high grade deposits

* Intensive development needed: Remote sensing, robotization, automatization, machine learning (Al)
in exploration and mining

* Solutions without the need of dewatering
* Less social confrontation with the other areas of society (e.g. agriculture, living environment...)
* No sulphide (pyrite) oxidation
» Quick, economic decision to further explore / exploit or not
* Smaller infrastructure / economic footprint on the surface
* Increase human safety (mining is a dangerous environment)




Already existing robotization and
automatization, autonomy
in raw materials exploration and mining

Own experience in Horizon2020 UNEXMIN / UNEXUP

and EIT RawMaterials projects VAMOS
Robominers

CHPM2030




'VAMOS!

iViable Alternative Mine Operating System!
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What is ‘VAMOS’?

‘Viable Alternative Mine Operating System’

An EC-funded novel mining methodology for inland mining

Custom-built multi-component submerged inland-mining robotics system

Environmentally considerate and hopefully viable mining technique

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme 21
under grant agreement No 642477”.



vameos
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Existing mined benches

Dry pit + Control cabin

—— LARV + LIBS bypass

e / Water Ingress

Flexible Riser + Umbilical

Deployment cable

Mining Vehicle + HROV

— Vertical Orebod




vameos
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Anticipated benefits of | VAI\/IOS /

Easily transportable modular system
No need to spend money on dewatering

Cheaper alternative to underground conversion

Lower stripping ratio achievable: less waste material processed

Primary crushing costs removed: material already crushed to <50 mm




vameos

NS SESS . i i QETEPRL o wET TR %

Anticipated benefits of i VAMOS!

No mine dust or blasting to harm or kill workers and disturb nature

No aquifer draw-down and associated risks for adjacent land

No blasting or fleet operation noise to disturb surroundings
No worker exposure to underground roof collapse

Proven publicly acceptable methodology



vameos

R R T
Launch and Recovery Vessel

Production Measurement Unit: p + Q

TP %%

Slurry bypass + LIBS unit

INSite: In-situ ore grading system
using LIBS in harsh environments

EIT RM project!!!!
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https://www.voutube.com/watch?v=XALp8YniNiT



https://www.youtube.com/watch?v=XALp8YniNiI

ROBOMINERS

Resilient Bio-inspired Modular Robotic Miners

Bio-inspired limb
(Molecricket foreleg)




Conce pt 1. Robot parts (modules) are sent
i underground via a borehole

2. They self-assemble to form a fully
ncom%mm funcional modular robot

3. Using specialised sensing devices,
they detect ore

4. Using ad-hoc production devices,
they produce slurry that is
pumped out

They can re-configure on-the-job




Mining system

* Need of a new approach to mining strategy and
mine design

* Studying and simulating the various systems tosurfs
components in future mining scenarios

to surface

* Creating a simulated environment for the
entire mining operation, considering
e drilling methods
* mineral exploration
* minerals processing and transport options
* power supply scenarios
* mine design and mine geometr

cutter




Targeted mines

 Abandoned mines. ROBOMINERS presents a solution for reopening many of
Europe’s abandoned underground mines, without the need for a full
recommissioning and in particular without the need to dewater the mine.

Left: Metals mined from the Cornwall mineralised belt. Right: Ruins of the abandoned Botallack Mine in Cornwall.
Operating from the 1500s to 1895, Botallack was once one of the greatest copper and tin mines in England




Targeted mines

* Small but high grade mineral deposits. The proposed technology does not
require the development of any mine infrastructure and even very small deposits

Mokrsko-West Mokrsko-East

can be mined.
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Targeted mines

 Ultra depth. Under this application scenario a large diameter borehole will be
drilled from the surface to the deep-seated deposit.

Extension of the
Kupferschiefer Formation in
~ NW Europe




Specific objectives
Build a fully functional modular robot-miner prototype capable of operating, navigating and
performing selective mining

Validate all key functions of the robot-miner to a level of TRL-4

Design a mining system of expected future upstream/downstream raw materials processes via
simulations, modelling and virtual prototyping

D&%

Use the prototypes to study and advance future research challenges on
/E\ * scalability, resilience, re-configurability, self-repair, collective behaviour, operation in harsh environments,
* selective mining,
aQIxo

» production methods,
* necessary converging technologies on an overall mining system level

New mining concept, proven in laboratory conditions, capableof @
changing the scenario of mineral exploitation




CHPM2030 - Combined Heat, Power and Metal extraction from
ultra-deep ore bodies

Concept

- ldentifying ultra deep metalliferous formations

—> Establishment of EGS

—Enhance the interconnected fracture systems
within the orebody

- Leaching metals from the orebody

— Production of heat and electricity

- Metal extraction from the geothermal brine



Schematic overview of the envisioned CHPM Facility
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